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ABSTRACT 

This work proposes a density sensitive distance measurement that takes into 

account the density of an underlying dataset to better represent the shape of the data when 

measuring distance.  Kernel density estimation, using kernel bandwidths determined by 

-nearest neighbor distances, is used to approximate the density of the underlying 

dataset.  A scale is applied to the resulting kernel density estimate and a line integral is 

performed along its surface resulting in a density sensitive distance.  This work tests the 

utility of the proposed density sensitive distance measurement using supervised learning.  

-Nearest Neighbor classification using both the proposed density sensitive distance 

measurement and Euclidean distance are compared on the Wisconsin Diagnostic Breast 

Cancer dataset and the MNIST Database of Handwritten Digits.  For perspective, these 

classifiers are also compared to Support Vector Machine and Random Forests classifiers.  

Stratified 10-fold cross validation is used to determine the generalization error of each 

classifier.  In all comparisons, k -Nearest Neighbor classification using the proposed 

density sensitive distance measurement had less generalization error than k -Nearest 

Neighbor classification using Euclidean distance.  For the MNIST dataset, k -Nearest 

Neighbor classification using the density sensitive distance measurement also had less 

generalization error than both Support Vector Machine and Random Forests 

classification. 

k
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EXECUTIVE SUMMARY 

This work proposes a density sensitive distance measurement that takes into 

account the density of an underlying dataset to better represent the shape of the data when 

measuring distance.  Kernel density estimation, using kernel bandwidths determined by 

-nearest neighbor distances, is used to approximate the density of the underlying 

dataset.  A scale is applied to the resulting kernel density estimate and a line integral is 

performed along its surface resulting in a density sensitive distance.  This work tests the 

utility of the proposed density sensitive distance measurement using supervised learning.  

-Nearest Neighbor classification using both the proposed density sensitive distance 

measurement and Euclidean distance are compared on the Wisconsin Diagnostic Breast 

Cancer dataset and the MNIST Database of Handwritten Digits.  For perspective, these 

classifiers are also compared to Support Vector Machine and Random Forests classifiers.  

Stratified 10-fold cross validation is used to determine the generalization error of each 

classifier.  In all comparisons, k -Nearest Neighbor classification using the proposed 

density sensitive distance measurement had less generalization error than k -Nearest 

Neighbor classification using Euclidean distance.  For the MNIST dataset, k -Nearest 

Neighbor classification using the density sensitive distance measurement also had less 

generalization error than both Support Vector Machine and Random Forests 

classification. 
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 1

I. INTRODUCTION  

When Operations Specialists, Combat Information Center Watch Officers, or 

Tactical Action Officers sit at their respective consoles, they often monitor sensor sweeps 

for incoming and outgoing surface, sub-surface, and aerial traffic.  With the help of these 

watchstanders, a ship's combat system will interpret the sweeps and produce surface, sub-

surface, or aerial tracks.  If the ship's combat system is too sensitive, then many false 

tracks are produced.  If the ship's combat system is too indifferent, then tracks that should 

be produced are not.  Either way, the majority of a watchstander's time can be spent 

analyzing whether or not a track in the combat system is actually there and cleaning up 

tracks that are not.  Moreover, since these tracks represent friendly, neutral, or hostile 

entities, a great amount of care is taken to ensure that tracks are classified correctly.  

Tracks are analyzed not only for their existence, but also for their operating 

characteristics and signatures.  Since a Combat Information Center would not want to fire 

on a friendly force, a commercial airliner, a fishing boat, or a cargo ship, a great amount 

of time is taken to make sure that a hostile track is actually a hostile track.  The time 

taken to verify that the system is correct is necessary because the algorithms in use are 

noisy.  If an anti-ship cruise missile, a low-slow flyer, or an explosives-filled wooden 

fishing vessel were inbound, then the watchstanders in that Combat Information Center 

may only have a few seconds from detection to reaction in order to avoid being hit.  

There is not enough time to verify that something inbound is real and correctly classified.  

Therefore, new or revised classification algorithms must be employed. 

The analysis of the sensor sweeps performed by the combat system falls into the 

category of computer vision – an application of machine learning.  The algorithms used 

by the combat system are designed to classify the information in the sweeps. 

The combat system needs to know how to distinguish a plane from the sky using a 

three dimensional radar, a ship from the sea using a surface radar, and a submarine from 

the ocean's floor using sonar without having any understanding of what a plane, the sky, a 

ship, the sea, a submarine, or the ocean's floor is.  To run efficiently (and hopefully 
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effectively), the combat system simply needs to know that a generic difference exists and 

how to take advantage of that difference to classify these entities.  This difference is often 

expressed as a simple distance measurement.  Since the combat system represents the 

physical environment as data in some information space, the farther apart two data points 

are that space, the less likely the corresponding physical objects are related. 

Once the combat system is given information, (such as a processed radar feed), 

the system can pass this information on to the classification algorithms.  These algorithms 

take in the unknown information and efficiently attempt to determine if that information 

represents a plane, the sky, a ship, the sea, a submarine, or the ocean's floor.  Since the 

classification algorithms have been trained to recognize planes, there is a good chance 

that information representing a plane will end up closer to where the previous 

information about planes has ended up.  Moreover, a simple distance metric is often used 

to determine which class an unknown piece of information belongs to.  If the information 

is closer to planes than it is to submarines, then that information is probably a plane. 

With this classification in hand, the combat system can perform a variety of cross-

referencing to determine if that newly classified item is a friendly, a neutral, a hostile, or 

simply part of the background. 

The first step in any of these classification routines is to receive processed sensor 

feeds, vice raw sensor feeds.  More often than not, raw sensor feeds give little to no 

relevant information that a classification algorithm would need to do its job.  A raw 

sensor feed usually gives nothing more than a direct reading, not how that reading differs 

or works in conjunction with previous readings.  This is where processing comes into 

play.  A raw sensor feed can be manipulated in order to emphasize invariant aspects of 

the object of interest.  Like processing an image from a digital camera, noise can be 

eliminated or minimized, changes in intensity can be determined, and normalization can 

be performed.  This information can be included into the processed feed that 

classification routines receive in order to increase the likelihood of a correct 

classification. 



As previously noted, a distance metric is commonly used in classification 

algorithms in order to determine how similar or different one thing is from another in the 

information space.  By far, the most common distance measurement utilized by these 

algorithms is Euclidean distance.  Euclidean distance assumes that two data points are 

similar based on their proximity to each other, without regard to the other things around 

them.  In other words, if we needed to determine that something is a ship or the sea in the 

information space, then Euclidean distance would simply determine which was closer, 

without regard to the density of the ships or the sea.  We could, however, take into 

account the density of ships and the sea in order to achieve a density-sensitive distance 

measurement.  In other words, if the ships were the red dots, the seas were the blue dots, 

and a black dot, equally far away from either the ships or the seas, was a new piece of 

information that we just received (as in Figure 1), then Euclidean distance would 

arbitrarily classify that new piece of information because the densities of the classes 

being dealt with are not taken into account. 

 

Figure 1.   A piece of information (the black dot) equally far away from two classes with 
different densities (the blue and red dots). 

Since the seas (the blue dots) are much more dispersed than the ships (the red 

dots) in the information space above, then it can be argued that in order for the new piece 

of information (the black dot) to be considered a ship (red), it ought to be as close to the 

rest of the ships as all the ships are to each other.  In other words, for this new piece of 

information (the black dot) to be classified as a ship (red), it ought to mimic the level of 
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dispersion of the previously encountered ships (the red dots).  Moreover, since the 

position of this new information (the black dot) in the information space is more 

consistent with the density of the seas (the blue dots), then it makes more sense to 

classify this new information as the sea (blue). 

Therefore, we need a distance that is sensitive to the density of the data over 

which it will measure.  Moreover, this density sensitive distance should be able to take 

measurements over any set or subset of data, regardless of class. 



II. RELATED WORK 

The creation of this density sensitive distance measurement will be based on 

previous work regarding kernel density estimates, distance measurements, and principal 

component analysis. 

A. KERNEL DENSITY ESTIMATES 

Although there are many different kernel density estimates, the key ones that this 

work most relied on are Parzen Windows and Manifold Parzen Windows. 

1. Parzen Windows (Parzen, 1962) 

Parzen Windows is a method of estimating the probability density function ( )f x

( )f x

 

of a random variable X  from sample data ( ) generated by that random variable.  

The Parzen Windows method centers a weighting function K  with a common width h  

on top of each sample  in the dataset and then adds up a scalar multiple of all those 

functions to produce an estimate of the underlying probability density function  .  

Thus, the univariate Parzen Windows estimate of the probability density function is 

1
, ,

m
x x

i
x

ˆ
m

( )
1

1 1ˆ
m

i
m

i

x x
f x K

m h h=

æ ö- ÷ç ÷ç= ÷ç ÷÷çè ø
å  

where  is the number of points in the sample dataset,  is an estimate of the 

probability density function 

m ( )ˆ
m
f x

( )f x  using m  samples, h  is the common width of the 

weighting function K ,  is the i -th point in the sample dataset for , and  

is the weighting function.  For a variety of reasons, the weighting function K  must 

satisfy: 

i
x 1, ,i m=  K

( ) 1K x dx
¥

-¥
=ò . 
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The weighting function K , also called the kernel function, can take many forms; 

however, one of the more popular weighting functions is the following: 

( )

2

2

2

x

e
K x

p
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=  

This weighting function satisfies ( ) 1K x dx
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which is the normalized sum of univariate normal distribution probability density 

functions where  is the mean of the i -th function and  is the common standard 

deviation. 

i
x h

For multivariate Parzen Windows where widths are allowed to vary along each 

dimension, the estimate of the probability density function becomes 

( )
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m
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where  is the number of samples in the dataset, xm


 is an  dimensional variable with 

components 

n

j
x  for , 1, ,j n=  ( )ˆ

m
f x


 is an estimate of the probability density function 

( )f x


 using m  samples of n  dimensions, 
j
h  is the width of the weighting function  

that is common along the -th dimension, 

K

j ( )i
j
x  is the -th component of i -th sample j

 6



from the dataset for  and , and  is the weighting function 

(Wasserman, 2007). 

1, ,i m= 

( )

1, ,j n=  K

Moreover, if the widths are allowed to covary along all dimensions, then the 

Parzen Window estimate is 
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(Alpaydin, 2004).  For similar reasons as the univariate case, the multivariate weighting 

function K  must satisfy the following: 
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1

n
K dx dx
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When , the multivariate weighting function K1h =  can be the following: 
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where n  is the dimension of the variable x


, S


 is the  covariance matrix of the 

sample data, 

n´n

S


 is the determinant of that covariance matrix, and 1-S


 is the inverse of 

that covariance matrix.  Note that here x


 is assumed to be a  column vector such 

that the transpose of that column vector x

1´n
T  results in a 1  row vector.  This 

multivariate weighting function satisfies  such that  

becomes 
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Figure 2.   An example of Parzen Windows. 

Figure 2 is an example in Parzen Windows (Vincent & Bengio, 2002).  On the 

left, we have a sample dataset.  On the right, we have an estimate ( )m
f x


 of the 

underlying probability density function using the multivariate weighting function K
S
  

with diagonal covariance matrix S


 with equal variance in all dimensions (i.e., a 

"spherical" bivariate normal). 

For Parzen Windows, one should recognize that the same width h  is used for 

every weighting function  that is placed on top of each sample in the dataset.  Once the 

width  is determined, it remains constant throughout the rest of the Parzen Windows 

method; hence, the width h  is derived from information that is global to the entire 

dataset, vice locally adapting to the sample data.  This makes the width h  difficult to 

determine for some datasets.  For those troublesome datasets, h  may be too wide at 

certain positions in the dataset and too narrow at other positions in the same dataset to 

accurately estimate the true density of the sample dataset. 

K

h

Parzen Windows using diagonal covariance matrix S


 with equal variance in all 

dimensions (i.e., "spherical" multivariate Normal) is the kernel density estimate that will 

be used for the proposed density sensitive distance measurement. 

 8



 9









2. Manifold Parzen Windows (Vincent & Bengio, 2002) 

Manifold Parzen Windows assumes that a sample dataset is produced from a 

lower dimensional manifold.  Locally adapting weighting functions  are used to 

estimate that manifold.  Manifold Parzen Windows infers the local direction of the 

underlying manifold by calculating the eigenvalues (i.e., variances) and corresponding 

eigenvectors (i.e., the directions of variance) associated with the covariance  of a 

neighborhood around each sample point.  Larger variances are assumed to be associated 

with the directions tangent to the manifold in order to account for the manifold.  Smaller 

variances are assumed to be associated with the directions normal to the manifold in 

order to account for the noise off the manifold.  A weighting function K  using that local 

covariance matrix  is then placed over the sample point ; hence, a different local 

covariance matrix  is used for each sample . 

i
K

i

i
S


i
S


i
S


i
x


i
x


For Manifold Parzen Windows, the neighborhood used to calculate the local 

covariance matrix for a given sample point can be a hard k -neighborhood, vice a range.  

In other words, we can compute the local covariance matrix  associated with a sample 

point  by considering the k -nearest neighbors of that sample point.  However, if k  is 

less than the dimension of our data (i.e., k ) or if the k -nearest neighbors do not span 

the dimension of our data (i.e., the k -nearest neighbors exist in a subspace of our -

dimensional dataset), then the resulting covariance matrix  would be singular and not 

invertible.  Therefore, an epsilon  of variance is also added along each dimension in 

order to guarantee non-singularity and invertibility. 

i
S


i

i
x


n<

n

S


e

Lastly, we can reduce some of the computational complexity of Manifold Parzen 

Windows by only considering the estimated dimension of the underlying manifold.  The 

dimension of the underlying manifold can be estimated by only considering the 

eigenvectors associated with the largest eigenvalues of each local covariance matrix .  
i

S
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These eigenvectors are estimates of the principal directions of the local manifold.  

Moreover, the eigenvectors associated with the smallest eigenvalues of each local 

covariance matrix  are the directions of noise off the manifold.  Therefore, we can 

discard the eigenvectors of noise, retain our eigenvectors of principal direction, and 

reduce our local covariance matrices  down to a dimension that better accounts for the 

manifold producing our data. 

i
S


i
S


Therefore, a Manifold Parzen Window estimate of the probability density 

function using a locally adapting multivariate normal weighting function 
,i i

N
m S

  is: 
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1
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m

m
i

f N
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= åx x
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where  is the number of points in the sample dataset, m ( )m
f x


 is an estimate of the 

probability density function ( )f x


 using m  samples,  is the i -th point in the sample 

dataset for i  (previously called ),  is the i -th locally calculated 

covariance matrix, and N

i
m

i



m


1,= ,
i
x
 S



,i im S
  is the locally adapting multivariate normal weighting 

function defined as 
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where 
,i i

N
m S

  is defined similarly to the multivariate normal weighting function in the 

Parzen Windows section. 



 

Figure 3.   An example of Manifold Parzen Windows. 

Figure 3 shows an example in Manifold Parzen Windows from (Vincent & 

Bengio, 2002).  On the left, we have a sample dataset.  On the right, we have an estimate 

( )m
f x


 of the underlying probability density function using ( )
,i i

N x
m S




 with local 

covariance matrices  calculated using the 10 -nearest neighbors of each sample point.  

Figure 3 should be compared to Figure 2 in order to see how Manifold Parzen Windows 

differ from Parzen Windows. 

i
S


For the proposed density sensitive distance measurement, we will use k -th 

nearest neighbor distances to determine the bandwidth of the kernel used in the density 

estimate of a dataset similar to the way that Manifold Parzen Windows used the k -

nearest neighbors to determine each local covariance matrix. 

B. DISTANCE MEASUREMENTS 

The proposed density sensitive distance measurement will be designed to be a 

locally weighted Euclidean distance, one of the Minkowski distances.  Moreover, the 

aspects of other distance measurements, namely the Mahalanobis distance and Wang et 

al.'s Density Sensitive Distance Metric (Wang, et al., 2006), will also impact this density 

sensitive distance measurement. 
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1. Minkowski Distances 

The Minkowski distance metrics include the Manhattan, Euclidean, and 

Chebyshev distances (Zezula, 2006).  The generic form of the Minkowski distance metric 

is the following: 

( ) ( )( ) ( ) ( )
1

1

distance ,
n p p

o f f o

p i
i

x x
=

æ ö÷ç ÷= -ç ÷ç ÷çè ø
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where  is the power of the metric, p Î  ( )ox


 is the initial point (the source point), ( )fx


 is 

the final point (the destination point), and n  is the shared dimension of the points. 

a. Manhattan Distance (City-Block Distance) 

Manhattan distance takes the following form: 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1

1
1

1 1

distance ,
n

o f f o

i i
i

f o f

n n
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= - + + -
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 o

 

(Zezula, 2006) and has the unit circle detailed in Figure 4; hence, this metric is not 

invariant to rotation (Samet, 2006). 

 

Figure 4.   The unit circle of Manhattan distance. 
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b. Euclidean Distance 

Euclidean distance takes the following form: 

( ) ( )( ) ( ) ( )
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(Zezula, 2006) and has the unit circle detailed in Figure 5; hence, Euclidean distance is 

invariant to rotation (Samet, 2006). 

 

Figure 5.   The unit circle of Euclidean distance. 

Moreover, since the linearly interpolation from ( )ox


 to ( )fx


 is 

( ) ( ) ( ) ( ) ( )1
o

o f
t t t = - +x x

  f
x


0 1t£ £ where  and ( ) ( ) ( )f o

o f
d -x x x

  
d t , then 

Euclidean distance can be rewritten as the following: 

t =

( ) ( )( ) ( )( ) ( )( )2
distance ,

To f

o f o f
d t dt d t d =x x x x

   
t  
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c. Chebyshev Distance (Chessboard Distance) 

Chebyshev distance has the following form: 

( ) ( )( ) ( ) ( )
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(Zezula, 2006) and has the unit circle detailed in Figure 6; hence, Chebyshev distance is 

not invariant to rotation (Samet, 2006). 

 

Figure 6.   The unit circle of Chebyshev distance. 

None of the Minkowski distances take the underlying dataset into account when 

performing their metric; hence, the distance looks at the dataset uniformly.  Moreover, 

the Minkowski distances do not offer different weights to different pairs of points; hence, 

these Minkowski distances are not locally weighted. 

2. Mahalanobis Distance (Mahalanobis, 1936) 

One reaction to the dataset-independent, unity-weighted Euclidean distance is 

Mahalanobis distance.  Mahalanobis distance takes into account the global covariance S


 

of a dataset and weights each distance based on this covariance.  Mahalanobis distance 

takes the following form: 
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( ) ( )( ) ( ) ( )( ) ( ) ( )( )1
Mahalanobis

distance ,
T

o f f o f o-= - -x x x x x xS
     

 

and has data dependent unit circles detailed in Figure 7. 

 

 

Figure 7.   The data dependent unit circles of Mahalanobis distance. 

For Mahalanobis distance, the unit for the unit circle is one standard deviation in 

the direction of each principal component; hence, the unit circle for Mahalanobis is a data 

dependent ellipsoid whose radii are one standard deviation in each of the principal 

component directions. 

While Mahalanobis distance is data dependent and takes into account the global 

variance of the dataset, it does not take into account the local densities of the dataset.  

Moreover, Mahalanobis distance offers no advantage over Euclidean distance when the 

global variances in each of the principal directions are equivalent (as in the left of Figure 

7). 
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3. Density Sensitive Distance Metric (Manifold Distance) (Wang et al., 
2006) 

The Density Sensitive Distance Metric of Ling Wang, Liefeng Bo, and Licheng 

Jiao has the following form: 

 16

)Let data points be the nodes of graph  and p  be a path of length ( ,G V E= VÎ  p=  

connecting the initial point  to the final point ( )ox
 ( )1= x ( ) ( )pf =x x

 
 in which 
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 for 1 .  Let k p£ £ ( ) ( ),

o fP
x x
   denote the set of all paths connecting the 

initial point ( )ox


 to the final point ( )fx


.  The density sensitive distance metric between two 

points is defined to be  
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where the density adjusted length of a line segment is defined to be  

( ) ( )( ) ( ) ( )( )1

2
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density
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length
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k kk k r

++ = -x xx x
  

 

where r  is the flexing factor for  and Î  1r > ( ) ( )( 1

2
distance ,

k k+
x x ) 

 is Euclidean 

distance between ( )kx


 and ( )1k+x


. 

The length of the line segment between ( )kx


 and ( )1k+x


 can be scaled by adjusting 

the flexing factor .  As detailed in their paper, "the density-sensitive distance metric can 

measure the geodesic distance along the manifold, which results in any two points in the 

same region of high density being connected by a lot of shorter edges while any two 

points in different regions of high density are connected by a longer edge through a 

region of low density." (Wang et al., 2006)  Hence, the Density Sensitive Distance Metric 

of Ling Wang, Liefeng Bo, and Licheng Jiao allows the distance along the path of 

 to be shorter than the path of ab  (as in Figure 8) as opposed to Euclidean 

distance.  

r

afedcb



 

Figure 8.   af fe ed dc cb ab+ + + + <  (Wang et al., 2006) 

Unfortunately, the Density Sensitive Distance Metric of Ling Wang, Liefeng Bo, 

and Licheng Jiao has a high computational cost since it assumes a complete graph over 

the entire dataset and then computes the shortest path between each pair of points.  The 

Density Sensitive Distance Metric of Ling Wang, Liefeng Bo, and Licheng Jiao 

accomplishes everything and more that our proposed density sensitive distance 

measurement attempts to accomplish; however, the proposed density sensitive distance 

measurement will attempt to reduce the computational cost of the Density Sensitive 

Distance Metric of Ling Wang, Liefeng Bo, and Licheng Jiao (i.e., the cost of calculating 

the shortest path in the complete graph) by restricting our measure to the straight line 

path from the initial point ( )ox


 to the final point ( )fx


 while traveling over a kernel density 

estimation. 

C. PRINCIPAL COMPONENT ANALYSIS (PCA) 

Principal Component Analysis (PCA) is the linear projection that minimizes the 

mean squared distance between data points and their projections (Bishop, 2007).  

Principal Component Analysis decomposes a dataset (usually through the dataset's 

covariance matrix) into a set of eigenvalues and eigenvectors that represents the 

directions of highest to lowest variance along an orthonormal basis where the principal 
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eigenvector points in the direction of the highest variance and all other eigenvectors are 

orthogonal and point in the directions of the next highest variance. 

For this work, PCA will be used to extract the maximum "lateral" variance (i.e., 

the maximum eigenvalue of the covariance matrix S


) for each dataset in order to 

determine a scale  applied to a kernel density estimate. g
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III. DENSITY SENSITIVE DISTANCE MEASUREMENT 

A. DEFINITION 

Let ( ) ( ) ( ) ( ) ( )1
o

o f
t t t = - +x x

  f
x


 be the linear interpolation from an initial point 

( )ox


 (the source point) to a final point ( )fx


( )
1

m

i
i

K
=

æ ö÷÷÷÷è øå x

 (the destination point) in n -dimensions and 

( )y g ç= ççç
x
 

Î 

( ) : n
i
K x

 be the scaled kernel density estimate of the dataset over which 

distances will be measured where g  is the scale (or gain) of ,  is the number of 

data points in the dataset, and 

y m

    is the kernel function centered at the i -th 

data point in that dataset (i.e., y  is the sum of kernel values at x


 where a kernel is placed 

at every data point in the entire dataset).  Then, the density sensitive distance 

measurement we are proposing is 

( ) ( )( ) ( )( ) ( )( ) ( )( )( )
21
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x


 is the derivative of the linear interpolation with respect 

to t  and ( )( )o f
dy t dtx


 is the derivative of ( )y x


 as it travels from the initial point ( )ox  

to the final point ( )fx


. 

The kernel function that will be used in this work is the probability density 

function for the spherical multivariate Normal distribution given by: 
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(

where s  is the radius of the sphere which is covered by the kernel (detailed in Appendix 

B), )ix  is the  i -th data point in the dataset with components 
 ( )i

j
x  for , and n  

is the dimension of the dataset. 

1, ,j n= 

Therefore, this density sensitive distance measurement is the line integral from 

( )ox


 to ( )fx


 as it travels along the surface of the scaled kernel density estimation of a 

dataset.   Each dataset (or data subset) will most likely have a different kernel density 

estimation and the line integral from ( )ox


 to ( )fx


 will be sensitive to the local density of 

the data over which it will measure. 

B. PURPOSE 

The purpose of the density sensitive distance measurement is to take into account 

the density of a set of data when determining how similar any given point is to the 

dataset.  If the set of data is highly concentrated, then a point that is part of that set should 

be at locations that mimic that concentration or else a penalty should be incurred.  

Similarly, if a set of data is greatly dispersed, then a point that is part of that set should 

also be at positions that imitate that level of dispersion or a similar price should be paid. 

C. PARAMETERS 

Based on the definition of this density sensitive distance measurement, there are 

two parameters that need to be determined before a measurement can be taken:  the 

kernel bandwidth and the scale.  For the kernel selected, the parameter that determines 

the kernel bandwidth is s .  The scale is determined by g . 

1. Kernel Bandwidth 

There are many ways to determine the optimal kernel bandwidth when the 

distribution of a dataset in known or suspected.  However, when the underlying 

distribution that generates the dataset is unknown, determining the bandwidth of the 

kernel becomes a matter of perspective.  We are free to choose a small bandwidth to 

show roughness in the data.  We are also free to choose a large bandwidth to show 



smoothness in that same data.  In other words, when we do not know what the underlying 

distribution is, then there is nothing for us to optimize against and we are free to choose 

the kernel bandwidth that best biases our results.  

This is analogous to viewing a painting in a gallery.  When the painter is not 

present to actively form the opinion of a patron by telling the patron where to stand and 

what to look for, then the patron must form his/her own opinion of the work.  Some 

patrons may choose to stand close to the painting to view the detail of each brush stroke.  

Some patrons may stand back to view the entire work as a whole without delving into any 

of its detail.  And some may search for a happy medium between the two.  Almost all the 

patrons will assign meaning to some portion of the work that was unintended by the 

painter.  However, the perspective of every patron is valid even though certain 

perspectives may conflict.  This freedom of perspective allows patrons to see what they 

want to see. 

Likewise, determining the kernel bandwidth of an unknown distribution is an 

exercise in perspective.  Since we do not know if we have enough data to absolutely 

assert one distribution over another and since we cannot be completely certain that the 

available data is a true random sample from the greater population (since we do not know 

the greater population), the kernel bandwidth can be reduced to a matter of perspective.  

For our purposes, we know the kernel we are using, the probability density function of 

the spherical multivariate Normal distribution, has a strong additive effect when the 

centers of two or more of these kernels are within 2  of each other (as in Figure 9).  This 

additive effect causes the overall kernel density estimation to appear smooth.  In this 

case, a kernel density estimate appears smooth when the number of extrema in the 

estimate are reduced to the relevant extrema, the extrema that best conform to the density 

we want to see.  However, if too many kernel centers are within 2  of each other, then 

there is too much of an additive effect and the resulting kernel density estimation is 

overly smooth (as in Figure 10).  In this case, a kernel density estimate is overly smooth 

when extrema, believed to conform to the density we want to see, are eliminated by the 

additive effective of the kernels. 

s

s
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Figure 9.   The additive effect that smoothes the kernel density estimation when kernel 
centers are within 2s  of each other.  Here, 1s = . 

 

Figure 10.   Over-smoothing the kernel density estimation when too many kernel centers 
are within 2s  of each other.  Here, 2s = . 

Since we arbitrarily desire the kernel density estimation to appear smooth, but not 

too smooth, then we will take advantage of this additive effect and choose a  that 

causes groups of centers to be within s  of each other.  To avoid over-smoothing, we 

collect the distances of k -th nearest neighbor from each datum in the dataset, bin these 

distances, and choose s  that corresponds to the middle distance associated with the bin 

that holds the maximum number of these k -th nearest neighbor distances. If we choose 

 to be small compared to the size of a dataset, then our  will be small as well and the 

kernel density estimation will be rougher.  If we choose k  to be large compared to the 

s

k s
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size of a dataset, then our s  will be large as well and the kernel density estimation will 

be smoother.  We found that starting with a k  that is approximately 15% of the size of 

the dataset yields acceptable results during cross-validation when maximizing accuracy, 

precision, recall, or various combinations. 

Since collecting the pair-wise distances can be quite expensive when the size of 

the dataset is high, we can treat the distances between each datum in a dataset as a 

population.  Moreover, since we know and have access to the entire population of pair-

wise distances, we can randomly sample these distances in order to come up with an 

acceptable kernel bandwidth.  For this work, when a dataset contains over 1000 data 

points, we first randomly sample up to 1000 data points from that dataset, find the pair-

wise distances between those randomly sampled points, and complete the previously 

described to-avoid-over-smoothing routine above on this random sample. 

Note:  As , the kernel density estimate approaches a flat plane and this 

density sensitive distance measurement approaches Euclidean distance.  

s  ¥

2. Scale 

As with kernel bandwidth, there are many ways to determine scale.  Scale  

effects the amplitude (or gain) of the kernel density estimation for a dataset (as in Figure 

11).  If , then the kernel density estimate will be amplified (i.e., the gain will be 

turned up) and the existing dataset will produce y -values with a higher variance (as in 

Figure 12).  If , then the amplitude of kernel density estimate will be reduced 

(i.e., the gain will be turned down) and the existing dataset will produce y -values with 

less variance (as in Figure 13). 

g

1g >

0 g< < 1
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Figure 11.   The kernel density estimation with 1g =  for two separate datasets. 

 

Figure 12.   Doubling the scale associated with a dataset.  Left, 1g =  for the blue kernel 
density estimate and 2g =  for the red kernel density estimate.  Right, 2g =  for 

the blue kernel density estimate and 1g =  for the red kernel density estimate. 
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Figure 13.   Halving the scale associated with a dataset.  Left, 1g =  for the blue kernel 

density estimate and 1 2g =  for the red kernel density estimate.  Right, 1 2g =  

for the blue kernel density estimate and 1g =  for the red kernel density estimate. 

Moreover,  can be used to change the variance of the y -values of a dataset.  

Since we know that variance can be estimated by the following equation: 
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then  can change the variance estimate of the y -values by the following: g
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Hence, 2 2
amplified -values
-values

y
y

g s s=  which implies that to change the variance of the y -

values produced by the kernel density estimate for a dataset, we only need to multiply the 

kernel density estimate by the follo

 

wing: 

2

desired  variance

2

current  variance

y

y

s
g

s
=  

Note:  That if , then this density sensitive distance measurement is identical 

to Euclidean distance. 

0g =

D. IMPLEMENTATION 

The line integral for this density sensitive distance measurement can be 

implemented using at least two methods: local adaptive quadrature on the integrand 

(Burden & Faires, 2005) or local adaptive Euclidean distance on the scaled kernel density 

estimation.  Local adaptive quadrature can be faster; however, the derivative of ( )y x


 

must be calculated.  If that is not desirable or even possible, then we can use local 

adaptive Euclidean distance directly on the scaled kernel density estimation (as in Figure 

14).  For local adaptive Euclidean distance, we simply choose various points along the 
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path from ( )ox


 to ( )fx , calculate their respective scaled kernel density estimations, and 

measure the Euclidean distance from point to point.  Then we divide each implied line 

segment in two and take the Euclidean distance of those two new segments.  We iterate 

until the change in distance between the whole segment and the two half segments is less 

than an established threshold.  When the distances of all the segments have been 

calculated, then the sum of all those segment distances approximates the line integral 

distance. 



 

 

Figure 14.   Successive iterations of local adaptive Euclidean distance on the scaled kernel 
density estimate from 4-  to 4  in order to approximate the line integral from 4-  

to 4 . 
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E. STRENGTHS 

The main strength of this density sensitive distance measurement is that it takes 

into account the density of the dataset over which it measures.  In so doing, the density 

sensitive distance measurement provides a more shape-conforming distance for 

classification than Euclidean distance alone.  For instance, if we only look to the 

immediate nearest neighbor using Euclidean distance for classification, then this is 

equivalent to the classifying a point based on its location in the Voronoi diagram.  For the 

circular datasets used in the Introduction, we would have a star shaped pattern for 

classification, vice a circular one (as in Figure 15 and Figure 16).  However, if we let 

 be the y -value variance for the blue class,   be the y -value variance for 

the red class, and  and  be the maximum lateral variances for the 

blue and red classes, respectively, then we can look to the immediate nearest neighbor 

using the proposed density sensitive distance for classification and achieve much more 

shape-conforming results (as in Figure 17 and Figure 18). 

blue 
variance

y
v

red 
variance
y

v

blue max
lateral variance

v
red max
lateral variance

v

 

Figure 15.   The Voronoi diagram and 1-nearest neighbor classification using Euclidean 
distance on the datasets from the Introduction. 
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Figure 16.   Close up of 1-nearest neighbor classification using Euclidean distance on the 
datasets from the Introduction. 

 

Figure 17.   1-nearest neighbor classification using density sensitive distance with 

blue blue max
lateral variance

vs = ,  
red red max

lateral variance

vs = , 

{ }blue blue red blue 
variance variance variance

min ,
y y y

v v vg =

{ }

 and 

red blue red red 
variance variance variance

min ,
y y y

v v vg =  on the datasets from the Introduction. 
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Figure 18.   1-nearest neighbor classification using density sensitive distance with 

blue blue max
lateral variance

vs = ,  
red red max

lateral variance

vs = , 

{ }blue blue red blue 
variance variance variance

max ,
y y y

v v vg =

{ }

 and 

red blue red red 
variance variance variance

max ,
y y y

v v vg =  on the datasets from the Introduction.  

F. WEAKNESSES 

The density sensitive distance measurement is not a distance metric.  In order for 

a measurement to be considered a metric, the triangular inequality must hold (Zezula, 

2006).  In other words, to be a metric, the following property must hold: 

( ) ( ) (, , , distance , distance , distance ,x y z S x z x y y z" Î £ + )

) )

)

 

The triangular inequality does not hold for this density sensitive distance measurement.  

For instance, given ( ), , and  and the scaled kernel density estimate 

in Figure 19, we would have the following: 

4, 4- - (4, 4- (4,4

( ) ( )( ) ( ) ( )( ) ( ) (( )distance 4, 4 , 4, 4 >distance 4, 4 , 4, 4 distance 4, 4 , 4,4- - - - - + -  

for density sensitive distance.  Hence, the triangle inequality does not hold for this 

density sensitive distance measure.  Therefore, the density sensitive distance 

measurement is a measurement, not a metric. 
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Figure 19.   Different perspective views on the same scaled kernel density estimation that 
demonstrate that the triangle inequality does not hold for this density sensitive 

distance measurement.  

Additionally, if we implement this density sensitive distance measurement using 

either local adaptive quadrature or local adaptive Euclidean distance, then we need to be 

conscious of the fact that a poor choice in where a line segment is broken can lead to 

incorrect results when calculating the line integral (as in Figure 20).  If a line segment is 

broken and the difference between the length of the original line and the lengths of the 

resulting two line segments is under a threshold, then locally adaptive routines assume 

they have adapted to their goal with a specified tolerance.  If they have not properly 

adapted, then the locally adaptive routine will return incorrect results for the line integral.  
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Figure 20.   A poor choice for the break in a line segment that will stop further locally 
adaptive line segments from being generated in the computation of the line 

integral from 4-  to 4 . 

Also, even though improvements have been made in shape-conforming 

classification, the potential exists to get odd classification results from certain 

combinations of kernel bandwidth and scale (as in Figure 21).  In Figure 21, if a datum 

falls in line with regions that we would usually consider to blue or red, then everything is 

as expected; however, if a datum is an outlier and falls far enough out of the traditional 

boundaries, then the datum is classified as red, even though blue is closer from a 

Euclidean distance point of view. 
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Figure 21.   1-nearest neighbor classification using density sensitive distance with 

blue blue max
lateral variance

vs = ,  
red red max

lateral variance

vs = , 
blue blue max blue 

lateral variance variance
y

v vg =  and 

red red max red 
lateral variance variance

y
v vg =  on the artificial dataset. 

Note that as odd as the results of Figure 21 are, we will retain its choice of  for 

classification later in this work.  

g

Lastly, since the kernel density estimate used by the proposed density sensitive 

distance measurement is non-parametric, the entire dataset must be retained and 

repeatedly iterated over for each measurement, not just representative samples from that 

dataset.  Therefore, there is a high computational cost to the proposed density sensitive 

distance measurement. 
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IV. METHODOLOGY 

To test the utility of the proposed density sensitive distance measurement, we use 

this distance measurement to perform supervised learning.  For k -Nearest Neighbor 

classification using the density sensitive distance measurement, we train and test on two 

real-world datasets.  We compare this to k -Nearest Neighbor classification using 

Euclidean distance.  Lastly, to put both of these results into context, we perform Support 

Vector Machine and Random Forests classification to see how well classification using 

this density sensitive distant measurement stands up against modern supervised learning 

algorithms.  For all classifiers, we use stratified 10-fold cross validation to obtain the 

generalization error of each classifier, record the overall accuracy and error rate, and 

document the precision and recall for each class.  

A. DATASETS 

We test the proposed density sensitive distance measurement on two datasets - the 

entire Wisconsin Diagnostic Breast Cancer (WDBC) dataset and a portion of the MNIST 

Database of Handwritten Digits. 

1. The Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset is from the University 

of California, Irvine, repository (UCI Machine Learning Repository: Breast Cancer 

Wisconsin (Diagnostic) Data Set.).  This is a small multivariate dataset with 569 total 

datum where each datum consists of 30 real-valued components.  Each datum is 

constructed from a digitized image of a fine needle aspirate (FNA) of a breast mass.  The 

datum represent characteristics of the cell nuclei present in the image.  Ten real-valued 

components are computed for each cell nucleus: 

1) radius (mean of distances from center to points on the perimeter), 

2) texture (standard deviation of gray-scale values), 

3) perimeter,  
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4) area,  

5) smoothness (local variation in radius lengths),  

6) compactness ( 2perimeter area 1- ),  

7) concavity (severity of concave portions of the contour),  

8) concave points (number of concave portions of the contour),  

9) symmetry, and 

10) fractal dimension ( ). " coastline approximation" 1-

The mean, standard error, and "worst" or largest (mean of the three largest values) of 

these components were computed for each image, resulting in 30 total components.  For 

instance, the first component is the mean of the radius, the 11th component is the 

standard error of the radius, and 21 component is the worst radius. 

Of the 569 total datum, 357 datum represent benign tumors and 212 represent 

malignant ones. 

2. The MNIST Database of Handwritten Digits 

The MNIST Database of Handwritten Digits is a subset of a larger database 

available from the National Institute of Standards and Technology (NIST) (MNIST 

Handwritten Digit Database, Yann LeCun and Corinna Cortes.).  The MNIST database 

was constructed from NIST's Special Database 1 and Special Database 3 which contain 

binary images of handwritten digits.  For the MNIST database, the original binary images 

from the NIST databases were size normalized to fit in 20  pixel windows while 

preserving their aspect ratio.  The resulting images contain grey levels as a result of the 

anti-aliasing technique used by the normalization algorithm.  Each 20  pixel image 

was centered in a 28  pixel window by computing the center of mass of the pixels, 

and translating the image so as to position this point at the center of this  pixel 

window. 

20´

20´

28

28´

28´
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The MNIST database consists of two sets of images - a training set of 60,000 

images and a testing set of 10,000 images.  The 60,000 pattern training set contains 

examples from approximately 250 different writers. 

For this work, we only use the handwritten ones, twos, and threes from the 

MNIST training set.  This is a medium sized multivariate dataset with 18,831 total datum 

where each datum consists of 784 integer-valued components with integers ranging from 

0 to 255.  Of the 18,831 total datum, 6,742 datum represent handwritten ones, 5,958 

datum represent handwritten twos, and 6,131 datum represent handwritten threes.  

Examples of the handwritten ones, twos, and threes are shown in original and enlarged 

sizes in Figure 22, Figure 23, and Figure 24. 

 

  

Figure 22.   An example of a handwritten one from the MNIST training dataset.  Left, the 
original size of the example.  Right, the enlarged size. 
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Figure 23.   An example of a handwritten two from the MNIST training dataset.  Left, the 
original size of the example.  Right, the enlarged size. 

  

Figure 24.   An example of a handwritten three from the MNIST training dataset.  Left, the 
original size of the example.  Right, the enlarged size. 
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B. SUPERVISED LEARNING 

Supervised learning is learning in which an algorithm receives a set of input 

datum and their corresponding output datum (i.e., a training dataset), trains on this data to 

find a function of the input data that approximates the known output data, and then uses 

that trained function on unknown input data (i.e., on a testing dataset) (Izenman, 2008).  

The input data may contain continuous or categorical values.  For classification, the 

output data consists of categorical values, usually called labels.  The goal of the learning 

algorithm for classification is to minimize the error incurred during the testing phase 

while only training on the training dataset.  In essence, supervised learning is analogous 

to classroom instruction.  A teacher presents each student with a set of various problems 

and their respective correct answers, the student then conceptualizes those problems and 

their respective answers, and finally, the student is tested on previously unseen problems 

and a grade is recorded. 

C. CLASSIFICATION ALGORITHMS 

For this work, we use the following classification algorithms:  k -Nearest 

Neighbor classification using the proposed density sensitive distance measurement, k -

Nearest Neighbor classification using Euclidean distance, Support Vector Machine, and 

Random Forests. 

1. -Nearest Neighbor Classification k

k -Nearest Neighbor classification is classification of a testing datum based on the 

majority vote of the class labels of k  most similar training data.  For this work, similarity 

will be determined by our density sensitive distance measurement and by Euclidean 

distance.   

Although -Nearest Neighbor is a sub-optimal procedure, its error rate can be 

bounded from below.  Given an unlimited amount of training data, 1-Nearest Neighbor 

classification has an error rate guaranteed to be no worse than twice the Bayes error rate, 

the minimum possible error rate (Duda, Hart, & Stork, 2000). 

1

 39



2. Support Vector Machine Classification 

Support Vector Machine classification projects training data into a higher-

dimensional space by creating new dimensions from combinations of the original 

dimensions and then finds the hyperplane that best separates the classes of data in that 

higher-dimension (Bradski & Kaehler, 2008).  Kernel functions, such as the polynomial 

kernel or the radial basis function kernel, are used to creating those new dimensions from 

combinations of original dimensions.  During testing, incoming data are projected into 

the higher-dimension using the kernel function, an inner-product is taken based on the 

normal vector of the class-separating hyperplane, and the sign of that inner product 

determines the classification of the data.  For multiple-class classification problems, 

multiple hyperplanes can be constructed.  For example, in a three class classification 

problem, the first hyperplane can separate class 1 data from non-class 1 data (i.e., class 2 

& 3 data).  The second hyperplane can separate class 2 data from non-class 2 data (i.e., 

class 3 data).  During the testing phase, a datum that is initially classified as a non-class 1 

datum need only look to the second separating hyperplane to determine if that datum 

should be classified as class 2 or class 3. 

For this work, we use the Support Vector Machine implementation in OpenCV 

1.1 (OpenCV 1.1 2008). 

3. Random Forests Classification 

Random Forests (Random Forests 2009) classification randomly constructs 

multiple decision trees based on training data.  During testing, each tree votes on the 

classification of incoming datum.  Incoming datum are classified based on the class with 

the most votes.  Below we give a brief description of Random Forests.  For a more 

detailed explanation, refer to (Random Forests 2009). 

In Random Forests, each tree is constructed as follows: 

1)  If the size of the training set is m , then sample m  cases at random with 

replacement and grow the tree from this sample set. 
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n2)  If there are n  components, a number k  is specified such that at each 

node, k  of n  components are selected at random and the best split on these k  is used to 

split the node. The value of k  is held constant during construction of the entire forest. 

<<

3)  No tree is pruned and each tree is grown to the largest extent possible. 

The Random Forest error rate depends on two things:  1) the correlation between 

any two trees in the forest and 2) the strength of each individual tree in the forest.  

Increasing the correlation between trees increases the error rate.  Increasing the strength 

of the individual trees decreases the error rate.  Reducing k  reduces both the correlation 

and the strength.  Increasing k  increases correlation and strength.  Hence, we need to 

find the k  that optimizes these parameters. 

For this work, we use the Random Forests implementation in OpenCV 1.1 

(OpenCV 1.1 2008). 

D. STRATIFIED 10-FOLD CROSS VALIDATION 

For this work, the classification algorithms are trained and tested using stratified 

10-fold cross validation. 

For  different classes, we separate the original data set into c  class data sets 

where each class data set only contains data with the same class label; in other words, the 

data in each of these class data sets are from the same class. 

c

Over 10 iterations, we then separate each class data set into two different sets - a 

class training set and a class testing set.  For the first iteration, the first 10% of each class 

data set is used for testing and the remaining 90% is used for training.  For the second 

iteration, the next 10% of each class data set is used for testing and the remaining 90% is 

used for training.  The data in third through the tenth iteration is divided similarly so that 

all of the data in the class data sets are used for testing during exactly one of the 

iterations. 

Cross validation is used to estimate prediction error (Hastie, Tibshirani, & 

Friedman, 2001).  Cross validation directly estimates the generalization error when a 

classification algorithm is applied to an independent sample testing dataset. 
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E. STATISTICS 

For each of the 10 folds of a cross validation, we record the confusion matrix for 

that fold.  From that confusion matrix, we determine the overall accuracy and error rate 

for that fold.  Additionally, the confusion matrix is also used to determine the precision 

and recall of each class during that fold.  At the end of the 10 folds of the cross 

validation, we find the mean and the standard deviation of overall accuracy and error.  

We also find the mean and standard deviation of the precision and recall of each class. 

1. Confusion Matrix 

The confusion matrix is a matrix that consists of rows that represent predicted 

classes and columns that represent actual classes from the testing phase of cross 

validation (as in Table 1. ) 

 

Actual 
 Class of 

Interest 
All Other 
Classes 

Class of 
Interest 

True 
Positive 

(TP) 

False 
Positive 

(FP) 

P
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d
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d

 

All Other 
Classes 

False 
Negative 

(FN) 

True 
Negative 

(TN) 

Table 1.  The Confusion Matrix. 

During the testing phase of cross validation, a classification algorithm will predict 

the class of a testing datum.  Since we also know the actual class of the testing datum 

during cross validation, then we can increment the cell in the confusion matrix that 

corresponds to the class the classifier predicted for the testing datum (i.e., the row) and 

the actual class of the testing datum (i.e., the column). 

When determining true positives, false positives, false negatives, and true 

negatives, we must first select a class of interest.  For instance, if we have the confusion 

matrix show in Table 2. and we choose Class 1 as our class of interest, then the count of 



our True Positives (i.e., Predicted: Class 1 and Actual: Class 1) would be 10 , the count of 

our False Positives (i.e., Predicted: Class 1 and Actual: All Other Classes) would be 

, the count of our False Negatives (i.e., Predicted: All Other Classes and 

Actual: Class 1) would be 3 5 , and the count of our True Negatives (i.e., 

Predicted: All Other Classes and Actual: All Other Classes) would be 

. 
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20 4 6+ +

8+ =
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1 
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Class 
3 

5 6 30 

Table 2.  An example three-class confusion matrix. 

2. Overall Accuracy 

Overall accuracy represents how well a classifier performed during a fold of cross 

validation procedure.  From the confusion matrix, overall accuracy is computed by 

dividing the summation of the value on the main diagonal by the summation of every 

value in the matrix.  In other words, the overall accuracy is the following: 

,

,
1 1

i j
i j

c c

i j
i j

CM

CM

=

= =

å

åå
 

where  represents the i -th row and -th column of the confusion matrix and c  is 

the number of separate classes. 

,i j
CM j

3. Overall Error Rate 

Overall error rate represents how poorly a classifier performed during a fold of 

the cross validation procedure.  Overall error rate is the opposite of overall accuracy; 
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however, we can also compute the overall error rate from the confusion matrix by 

dividing the summation of all values off of the main diagonal by the summation of every 

value in the matrix.  In other words, the overall error rate is the following: 

,

,
1 1

i j
i j

c c

i j
i j

CM

CM

¹

= =

å

åå
. 

4. Precision 

To calculate precision, we must first fix a class of interest.  Once a class of 

interest is chosen, then precision can be calculated by the following: 

True Positives
Precision

True Positives False Positives
=

+
. 

5. Recall 

To calculate recall, we must first fix a class of interest.  Once a class of interest is 

chosen, then recall can be calculated by the following: 

True Positives
Recall

True Positives False Negatives
=

+
 

A good classification algorithm may produce high values for both precision and 

for recall.  A poor classifier will produce high values for either precision or for recall, but 

not for both. 
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V. RESULTS 

The results for classification over the Wisconsin Diagnostic Breast Cancer 

(WDBC) dataset and the ones, twos, and threes from the MNIST Database of 

Handwritten Digits using various classifiers are presented.  We report the results of the 

two best parameterizations for each type of classifier (as determined by the overall 

accuracy). 

A. THE WISCONSIN DIAGNOSTIC BREAST CANCER (WDBC) DATASET 

1. Overall Accuracy and Error Rate 

Classifier Overall Accuracy Overall Error Rate 

k -Nearest Neighbor using 

the Density Sensitive 

Distance Measurement 

with  and  
classification

8k =

kernel density
estimation

100k =  

0.943759

0.0111921
 

0.0562408

0.0111921
 

k -Nearest Neighbor using

the Density Sensitive 

Distance Measurement 

with  and 
classification

10k =

kernel density
estimation

106k =  

0.938525

0.0146528
 

0.0614748

0.0146528
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k -Nearest Neighbor using 

Euclidean Distance 

with  8k =

0.938558

0.0188182
0.0614424

0.0188182
 

k -Nearest Neighbor using 

Euclidean Distance 

with  10k =

0.935048

0.0185173
0.0649523

0.0185173
 

Support Vector Machine using

the Polynomial Kernel with 

Degree 3= , ,  610g -=

0.1n = , and coe  f0 240=

0.962938

0.0348735

0.0370625

0.0348735
 

Support Vector Machine using

the Polynomial Kernel with 

Degree 5= , ,  610g -=

0.1n = , and coef  0 2.4=

0.961275

0.0233969

0.038725

0.0233969
 

Random Forests with  

trees 20= , de , pth 20=

and sp  lit size 11=

0.966569

0.0154972

0.0334306

0.0154972
 

Random Forests with  

trees 20= , de , pth 20=

and  split size 6=

0.966538

0.0255376

0.0334619

0.0255376
 

Table 3.  Overall Accuracy and Error Rate for the Wisconsin Diagnostic Breast 
Cancer (WDBC) Dataset 
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2. Class Precision and Recall 

 Class: Malignant Class: Benign 

Classifier Precision Recall Precision Recall 

k -Nearest Neighbor using  

the Density Sensitive 

Distance Measurement 

with  and 
classification

8k =

kernel density
estimation

100k =  

0.948574

0.0397934
0.901082

0.0565543

0.9443

0.0301339
 

0.969127

0.0246911

k -Nearest Neighbor using 

the Density Sensitive 

Distance Measurement 

with  and 
classification

10k =

kernel density
estimation

106k =  

0.952244

0.037813
 

0.882468

0.0625009

0.934446

0.0321631
 

0.971905

0.0231181

k -Nearest Neighbor using 

Euclidean Distance 

with  8k =

0.935527

0.0488191

0.901082

0.0648552

0.944229

0.0353156
 

0.960794

0.0300639

k -Nearest Neighbor using 

Euclidean Distance 

with  10k =

0.934084

0.0381952

0.891775

0.0737203

0.939503

0.0398287
 

0.960714

0.0236421
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Support Vector Machine 

using the Polynomial 

Kernel with 

Degree 3= , , 610g -=

0.1n = , and coe  f0 240=

0.953864

0.055712
 

0.947835

0.0524313

0.969643

0.0303464
 

0.971905

0.035075
 

Support Vector Machine 

using the Polynomial 

Kernel with 

Degree 5= , ,  610g -=

0.1n = , and coef  0 2.4=

0.954192

0.0468176
0.943506

0.0434155

0.967224

0.0248127
 

0.971905

0.0297879

Random Forests with 

trees 20= , de ,  pth 20=

and  sp  lit size 11=

0.963834

0.0417267

 
  

0.948052

0.0345719
0.969932

0.0194968
 

0.977619

0.0257602

Random Forests with 

trees 20= , de , pth 20=

and s  plit size 6=

0.959844

0.0521776
0.952814

0.0383116

0.972399

0.0219143
 

0.974762

0.0337253

Table 4.  Precision and Recall for each class in the Wisconsin Diagnostic Breast 
Cancer (WDBC) Dataset 

3. Precision and Recall Curves 

The following plots show precision versus recall for all 10-fold cross validation 

runs of all classifiers.  In these curves, the scale for the Precision and Recall axes range 

from  to 1.00 , vice  to , to emphasize the results. Note that some 

individual runs of stratified 10-fold cross validation of Support Vector Machine and 

Random Forests classification were perfect. 

0.60 0.00 1.00
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Figure 25.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
the Density Sensitive Distance Measurement for the Malignant Class in the 

Wisconsin Diagnostic Breast Cancer (WDBC) Dataset  

 

Figure 26.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
the Density Sensitive Distance Measurement for the Benign Class in the 

Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 
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Figure 27.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
Euclidean Distance for the Malignant Class in the Wisconsin Diagnostic Breast 

Cancer (WDBC) Dataset 

 

Figure 28.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
Euclidean Distance for the Benign Class in the Wisconsin Diagnostic Breast 

Cancer (WDBC) Dataset 
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Figure 29.   The Precision and Recall Curve for the Support Vector Machines for the 
Malignant Class in the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 

 

Figure 30.   The Precision and Recall Curve for the Support Vector Machines for the 
Benign Class in the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 
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Figure 31.   The Precision and Recall Curve for the Random Forests for the Malignant 
Class in the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 

 

Figure 32.   The Precision and Recall Curve for the Random Forests for the Benign Class 
in the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 
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4. Discussion 

Since the proposed density sensitive distance measurement is essentially a locally 

weighted Euclidean distance, k -Nearest Neighbor classification using this density 

sensitive distance measurement slightly outperforms the same classifier using Euclidean 

distance.  However, we note that the intervals (i.e., the means  the standard deviations) 

overlap. 



As expected, the modern supervised learning algorithm, Random Forest, 

dominates overall accuracy, overall error rate, and precision and recall for each class.  

Although the intervals for k -Nearest Neighbor using the density sensitive distance 

measurement and Random Forest do overlap, that overlap is quite slight. 

B. THE ONES, TWOS, AND THREES FROM THE MNIST DATABASE OF 
HANDWRITTEN DIGITS 

1. Overall Accuracy and Error Rate 

Classifier Overall Accuracy Overall Error Rate 

k -Nearest Neighbor using

the Density Sensitive 

Distance Measurement 

with  and 
classification

1k =

kernel density
estimation

150k =  

0.994105

0.00168777
 

0.00589454

0.00168777
 

 53



 

k -Nearest Neighbor using 

the Density Sensitive 

Distance Measurement 

with  and 
classification

1k =

kernel density
estimation

100k =  

0.994052

0.00169415

0.00594762

0.00169415
 

k -Nearest Neighbor using 

Euclidean Distance 

with  1k =

0.993575

0.00179531

0.00642549

0.00179531
 

k -Nearest Neighbor using 

Euclidean Distance 

with  3k =

0.992353

0.00203715

0.00764703

0.00203715
 

Support Vector Machine using

RBF Kernel with 

75.99484 10g -= ´  

and  0.1n =

0.98837

0.00364056

0.0116298

0.00364056
 

Support Vector Machine using

RBF Kernel with 

710g -=  

and  0.1n =

0.981785

0.00472434

0.0182148

0.00472434
 

Random Forests with 

trees 20= , de , pth 20=

and  split size 4=

0.985343

0.00392884

0.0146569

0.00392884
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Random Forests with  

trees 20= , de , pth 20=

and  split size 3=

0.985025

0.00416513

0.0149753

0.00416513
 

Table 5.  Overall Accuracy and Error Rate for the Ones, Twos, and Threes from the 
MNIST Database of Handwritten Digits 

2. Class Precision and Recall 

 Class: Ones Class: Twos Class: Threes 

Classifier Precision Recall Precision Recall Precision Recall 

k

k

k

-Nearest Neighbor 

using the Density 

Sensitive Distance 

Measurement with 

 and 

 

classification
1=

kernel density
estimation

= 150

0.995565

0.00294162
 

0.99733

0.00136235
0.991615

0.00304218

0.991777

0.00278905
0.994937

0.00161508
0.992824

0.00354039

k

k

k

-Nearest Neighbor 

using the Density 

Sensitive Distance 

Measurement with 

 and 

 

classification
1=

kernel density
estimation

= 100

0.995419

0.00297786
 

0.99733

0.00136235
0.991614

0.0030415
 

0.991609

0.00295768
0.994937

0.00161508
0.992824

0.00354039

k -Nearest Neighbor 

using Euclidean 

Distance with 

 1k =

0.993805

0.00330286
 

0.997924

0.00143185
0.992094

0.00326101
0.989091

0.00308645
0.994777

0.00251895

0.99315

0.00358793
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k -Nearest Neighbor 

using Euclidean 

Distance with 

 3k =

0.989572

0.0035872
 

0.99822

0.00168445
0.992744

0.00285545

0.986407

0.00527022
0.995094

0.00297708
0.991682

0.00236131

Support Vector 

Machine using RBF 

Kernel with 

 

and  

75.99484 10g -= ´

0.1n =

0.997592

0.001611
 

0.982498

0.00702177
0.977642

0.00713341
0.995805

0.00276832
0.989069

0.00539673
0.987604

0.004156
 

Support Vector 

Machine using RBF 

Kernel with 

 and 

 

710g -=

0.1n =

0.987824

0.00496109
 0.985168

0.00576701
0.974657

0.00679761
0.986239

0.00416655

0.982254

0.00795159
0.97374

0.00739521

Random Forests 

with , 

, and 

 

trees 20=

h 20=

lit size 4=

dept

sp

0.994931

0.00322289
 

0.988876

0.00485519
0.972341

0.00813912

0.989427

0.00371177
0.987798

0.00305495

0.97749

0.00752933

Random Forests 

with , 

, and 

 

trees 20=

h 20=

lit size 3=

dept

sp

0.994485

0.0043141
 

0.988283

0.00481462

0.972783

0.00615367
0.988756

0.00581317
0.986863

0.00733193
0.977817

0.00667079

Table 6.  Precision and Recall for the Ones, Twos, and Threes from the MNIST 
Database of Handwritten Digits 
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3. Precision and Recall Curves 

The following plots show precision versus recall for all 10-fold cross-validation 

runs of all classifiers.  In these curves, the scale for the Precision and Recall axes range 

from 0.90  to 1.00 , vice  to 1.00 , to emphasize the results. 0.00

 

Figure 33.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
the Density Sensitive Distance Measurement for the Ones Class of the MNIST 

Database of Handwritten Digits 
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Figure 34.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
the Density Sensitive Distance Measurement for the Twos Class of the MNIST 

Database of Handwritten Digits 

 

Figure 35.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
the Density Sensitive Distance Measurement for the Threes Class of the MNIST 

Database of Handwritten Digits 
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Figure 36.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
Euclidean Distance for the Ones Class of the MNIST Database of Handwritten 

Digits 

 

Figure 37.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
Euclidean Distance for the Twos Class of the MNIST Database of Handwritten 

Digits 
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Figure 38.   The Precision and Recall Curve for the k -Nearest Neighbor classifiers using 
Euclidean Distance for the Threes Class of the MNIST Database of Handwritten 

Digits 

 

Figure 39.   The Precision and Recall Curve for the Support Vector Machines for the Ones 
Class of the MNIST Database of Handwritten Digits 
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Figure 40.   The Precision and Recall Curve for the Support Vector Machines for the Twos 
Class of the MNIST Database of Handwritten Digits 

 

Figure 41.   The Precision and Recall Curve for the Support Vector Machines for the 
Threes Class of the MNIST Database of Handwritten Digits 
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Figure 42.   The Precision and Recall Curve for the Random Forests for the Ones Class of 
the MNIST Database of Handwritten Digits 

 

Figure 43.   The Precision and Recall Curve for the Random Forests for the Twos Class of 
the MNIST Database of Handwritten Digits 
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Figure 44.   The Precision and Recall Curve for the Random Forests for the Threes Class 
of the MNIST Database of Handwritten Digits 

4. Discussion 

As with the WDBC dataset, k -Nearest Neighbor classification using the density 

sensitive distance measurement again slightly outperforms the same classifier using 

Euclidean distance.  Similarly, we note that the intervals (i.e., the means   the standard 

deviations) overlap. 

However, the modern supervised learning classification algorithms, Support 

Vector Machine and Random Forests, do not dominate the overall accuracy and overall 

error rate.  For both overall accuracy and error rate, the classifier using our density 

sensitive distance measurement has superior performance.  Moreover, the intervals of the 

Support Vector Machines and Random Forests do not overlap with the classifier using 

our density sensitive distance measurement. 
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VI. SUMMARY & CONCLUSIONS 

A. SUMMARY 

The proposed density sensitive distance measurement takes into account the 

density of each dataset over which it is used.  This density sensitive distance 

measurement first finds the kernel density estimate of a given dataset and then takes the 

line integral along the surface of that kernel density estimate as we travel linearly from an 

initial position to a final position.  The parameters required to be determined for this 

density sensitive distance measure are the kernel bandwidth and the scale.  In this work, 

the kernel bandwidth is , the radius of the sphere each kernel approximates.  Since we 

arbitrarily desire smooth kernel density estimates, we take advantage the additive 

properties of the chosen kernel when their centers are within 2  of each other.  Hence, 

we find the distance of the k -th nearest neighbor for each data point in a dataset and 

form a value for s  around these k -th nearest neighbors distances.  The scale g  allows 

the variance in the kernel density estimate (i.e., the "vertical" variance) to be modified so 

that it will not be overpowered by the variances in the x

s

s

 


 direction (i.e., "lateral" 

varianc

o

st Cancer (WDBC) dataset 

and a portion of the MNIST Database of Handwritten Digits. 

es). 

From the definition of the proposed density sensitive distance measurement, we 

utilized the density sensitive distance measurement in supervised learning in order to 

determine its utility and performance.  Using stratified 10-fold cross validation to 

determine the generalization error, we trained and tested the k -Nearest Neighb r 

classifier using the proposed measurement.  We also compared that classifier with k -

Nearest Neighbor classification using Euclidean distance and two modern supervised 

learning algorithms, Support Vector Machines and Random Forests.  This comparison 

took place over two datasets, the Wisconsin Diagnostic Brea
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easurement was superior to Support Vector Machines and 

Random Forests (although still only nominally better than Euclidean distance).  All 

classifi

hundreds (if not thousands of time) times.  For small datasets, this can be negligible; 

bases and beyond, this is may be too great a price to pay.  

To mitigate this computational cost, there are many approximations that can be made to 

substan

The proposed density sensitive distance measurement was used in classification 

on eas

. 

B. CONCLUSIONS 

The proposed density sensitive distance measure behaved as if it were a locally 

weighted Euclidean distance.  As k -Nearest Neighbor classification using Euclidean 

distance did well, then k -Nearest Neighbor using our density sensitive distance did 

slightly better.  During classification, when proximity was a nominal factor compared to 

density, as it was in the WDBC dataset, then our density sensitive distance measurement 

was nominally more successful than Euclidean distance, but subordinate to the modern 

algorithms involved in Support Vector Machine and Random Forests classification.  

When proximity was a larger factor in classification, as it was in the MNIST dataset, then 

our density sensitive distance m

ers over both datasets did extremely well; therefore, future research using this 

density sensitive distance measurement for classification should concentrate on more 

difficult datasets. 

The proposed density sensitive distance measurement conforms better to the 

shape of the data than Euclidean distance and performs slightly better in k -Nearest 

Neighbor classification; however, this density sensitive distance measurement comes at a 

high computation cost.  Since the line integral must use values from the kernel density 

estimation, a single distance calculation must iterate over the entire training dataset 

however, for medium sized data

tially speed up the calculation of this density sensitive distance measurement. 

C. FUTURE WORK 

ier datasets; hence, all classifiers performed extremely well.  Since all the 

classifiers had exceptional performance, it made a definitive comparison more 

challenging.  In future comparisons, more discriminating datasets should be used
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pending on the value of , many 

points i

haves as 

a locally weighted Euclidean distance and since Euclidean distance is orders of 

magnitude faster, a light-weight non-linear regression of the kernel density estimate that 

applies a weight to Euclidean distance may greatly increase the speed and utility of this 

density sensitive distance measurement while minimally impacting its accuracy. 

Also, the current implementation of the proposed density sensitive distance 

measurement can be optimized to only take into account training points that are 

approximately near to any given testing point.  De  s

n the training dataset may negligibly contribute to the value of the kernel density 

estimate at a given testing point.  Work can be done to determine which training points 

contribute and which do not, perhaps similarly to how KD Trees determine the relevancy 

of points involved in a range or near neighbor query. 

Moreover, since the proposed density sensitive distance measurement be
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VII. APPENDIX 

 69

1+
A. THEOREM:  THE NORMALIZED FIRST APPROXIMATION TO THE 

TAYLOR SERIES EXPANSION OF THE UPPER-HALF OF THE n  

DIMENSIONAL ELLIPSOID CENTERED AT ( )1
, , , 0

n
m m  AND 

ROTATED IN A HYPERPLANE RESTRICTED TO THE FIRST  
DIMENSIONS IS THE PROBABILITY DENSITY FUNCTION OF THE 
MULTIVARIATE NORMAL DISTRIBUTION 

n

To prove this we will first prove this for the  dimensional axis-aligned 

ellipsoid and then extend this to any  dimensional ellipsoid that has been rotated on 

a n  dimensional hyperplane. 

1n +

1n +

1. The Upper-Half of the  Dimensional Axis-Aligned Ellipsoid 1n +

Let  be variables aligned to the  axes of .  The equation for 

an axis-aligned ellipsoid centered at (
1
, , ,

n
x x y 1n + 1n+

)1
, , ,

n
m m

1n +

0  where  for  with 

radii  along each of those  axes where s  such that  

for k  is given by the following: 

j
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k
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k
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Solving for y , we have the following:  
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If we restrict our focus to the upper-half of this axis-aligned ellipsoid (i.e., ), then 

we have the following: 

0y ³

( )2
upper-half 1 2
axis-aligned 1
ellipsoid

1
n

j j

n
j j

x
y

m
s

s+
=

æ ö÷ç - ÷ç ÷ç= + - ÷ç ÷ç ÷÷çè ø
å  

Since  and ( )
0

from real analysis

lim log
u

u
+

= -¥


( )
0

from complex analysis

lim log
u

u
-

= -¥


( )
0
log u = -¥

 for u , then 

.  Furthermore, since  and  for 

, then 

Î 

( )
0

lim log
u

u


= -

,u v Î 

¥

(

lim
u

( )exp vlim 0
v-¥

=

)( )exp logu u=  for u .  Since  for u  and 

, then we have the following: 

0³ ( )( )u u exp l= og Î

0u ³
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Returning to the upper-half our axis-aligned ellipsoid, we have the following: 
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Hence, the first approximation to the Taylor series expansion of the upper-half of our 

axis-aligned ellipsoid is the following: 
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We now parameterize  using 
1n

s + j
s

 approx
per-
ed ellip

 for  such that the first 

approximation to the Taylor series expansion of the upper-half of our axis-aligned 

ellipsoid is normalized.  In order for  to be normalized, the "area" under its 

"curve" needs to be one; in other words, we need the following: 
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For this to occur, we have the following: 
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Therefore, the normalized first approximation to the Taylor series expansion of the 

upper-half of our axis-aligned ellipsoid is the following: 

( )
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normalized 2
first approximation 12to upper-half axis-
aligned ellipsoid
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Note:  That the normalized first approximation to the Taylor series expansion of the 

upper-half of our axis-aligned ellipsoid is the probability density function of the axis-

aligned multivariate Normal distribution. 

Let V


 (for variances) be the diagonal matrix created from the square of the first 

 radii such that we have the following: n
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where 0>V


 since  for . 0
k

s > 1, ,k n= 

With these properties in mind, we can re-write the normalized first approximation 

to the Taylor series expansion of the upper-half of our axis-aligned ellipsoid as the 

following: 
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where ( )1
,

T

n
x x=x   and ; in other words, x( 1

, ,
T

n
m mm =  ) 

 and m  are column 

vectors.  Moreover, since all the radii are axis aligned, then there is no covariance and 
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axis-aligned

V = S
 

 where  is the axis aligned covariance matrix (i.e., positive non-

zero values only on the diagonal); hence, we can re-write the normalized first 

approximation to the Taylor series expansion of the upper-half of our axis-aligned 

ellipsoid as the following: 
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2. The Upper-Half of the  Dimensional Rotated Ellipsoid 1n +

Since the equation for our  dimensional axis-aligned ellipsoid is the 

following: 

1n +
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then the upper-half axis-aligned ellipsoid can be re-written as the following: 
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Let  be the rotation matrix that rotates  radians in the hyperplane spanned 

by  and 

,i j
R


i
x
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x


 basis vectors where , n
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Îx x

   , , , and i j ; 

hence, we have the following: 
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As a rotation matrix, 
,i j
R


 has the following properties: 

1)   is an orthogonal matrix 
,i j
R


2)   1

, ,

T

i j i j

-=R R
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1
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Let R


 represent all possible rotations in , then we have the following: n
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Moreover, R


 has the following properties: 

1)  Since the product of orthogonal matrices is an orthogonal matrix, then R


 is an 

orthogonal matrix 
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2)  Since , then we have the following: 
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With these properties in mind, we can rotate our upper-half ellipsoid around its 

center by multiplying  by the column 

vector (
1, 3, 3,4 2, 2,3 1, 1,2

T T T T T T T

n n n n n- =R R R R R R R
      

   

-x m
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) ) 3

Example:  Let  be variables aligned to the 3  axes of , then the equation for an 

axis-aligned ellipsoid centered at (  with radii (  along each of those  

axes is the following: 

1 2
, ,x x y 3
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For the upper-half of this axis-aligned ellipsoid, we have the following: 
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which produce the following graph (perspective and top views, respectively): 

 



If we rotate our upper-half ellipsoid around its center by 
6

p
q =  radians in the -  

hyperplane, then we have the following: 
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and 
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which produces the following graph (perspective and top views, respectively): 

 

Similarly, we can also rotate the first approximation to the Taylor series expansion of the 

upper-half of our axis-aligned ellipsoid; hence, we have the following: 
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Moreover, we can also rotate the normalized first approximation to the Taylor series 

expansion of the upper-half of our axis-aligned ellipsoid; hence, we also have the 

following: 
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The full covariance matrix S


 (i.e., the covariance matrix that is not necessarily 

axis-aligned) can be recovered from the following singular value decomposition: 

ordered

T =BV B S
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where B


 (for basis) is an orthogonal matrix such that 1= B


 and  is 
ordered
V


V


 with 

the squared radii (i.e., the variances) ordered along the diagonal.  Thus, we need to find 

B


 to recover S


. 

In order to find B


, we now turn to row and column swapping elementary 

matrices.  Let  and  denote the w -th row and column swapping elementary 

matrix, respectively.  Row and column swapping elementary matrices can be used to 

order values along the diagonal of a matrix.  Since we need to order 
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Row swapping and column swapping elementary matrices also have the following 

properties: 
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01)   and  are orthogonal matrices with components of value  or 1  only 
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Since we are reordering the squared radii (the variances) along the diagonal of V
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Since the singular value decomposition of S


 is  where 
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Thus, the eigenvectors associated with the covariance matrix S


 are a result of the 

"rotation" and ordering of the eigenvalues (i.e., the ordered squared radii or the 

variances).  Hence, the covariance matrix . 
ordered

T T= =BV B VRS
      

R
      

Therefore, the  dimensional upper-half ellipsoid that is rotated in a n -

dimensional hyperplane about its center is the following: 
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The first approximation to the Taylor series expansion of the upper-half of our rotated 

ellipsoid above is the following: 
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The normalized first approximation to the Taylor series expansion of the upper-half of 

our rotated ellipsoid above is the following: 
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Therefore, the normalized first approximation to the Taylor series expansion of 

the upper-half of the  dimensional ellipsoid centered at (  and rotated in 

a hyperplane restricted to the first n  dimensions is the probability density function of the 

multivariate Normal distribution. 
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B. COROLLARY:  THE PROBABILITY DENSITY FUNCTION OF THE 
MULTIVARIATE NORMAL DISTRIBUTION CENTERED AT 
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n
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 IS BOUNDED 
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TAYLOR SERIES EXPANSION OF THE UPPER-HALF OF THE n  
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. 

The probability density function of the multivariate Normal distribution is the 

following: 
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The maximum value of this function occurs when =x m
.  When =x m

, then 

 and we have the following: - =x m
0
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Hence, the maximum value of the probability density function of the multivariate Normal 

distribution is ( )( )1 22
1 2

n
p S


. 

Let ( )( )1 22

1
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n
s p+ = S


 where S


 is the identical covariance of the 

probability density function of the multivariate Normal distribution above.  Then we have 

the following scaled Taylor series expansion of the  dimensional rotated ellipsoid: 1n +
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Similarly, the maximum value of this function occurs when =x m
.  When =x m

, then 

 and we also have the following: - =x m
0
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Hence, at x = m
, we have  which implies that we also have 
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Since S


 is non-singular, then 1-S


 exists and, from the details of the previous 

theorem, TRS = RV
      

 where R


 is a composite of rotation matrices and V


 is a diagonal 

matrix with entries corresponding to the squared radii of the axis-aligned ellipsoid (i.e., 

the radii of the ellipsoid prior to its current rotated state).  Since all these squared radii are 
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Therefore, since , then the probability density function of 

the multivariate Normal distribution centered at 

scaled upper-half pdf of the
rotated ellipsoid multivariate

normal

y y£
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m m=m   with non-singular 

covariance S


 is bounded below by the second or higher approximation to the Taylor 

series expansion of the upper-half of the  dimensional ellipsoid with identical 

covariance S

1n +


 centered at  and multiplied by the scalar ( )1

, , , 0
n

m m ( )( )1 22n
p S1 2


.  

Example:  Let  be variables aligned to the 2  axes of , then the equation 

for the probability density function of the multivariate Normal with  and  

is the following: 
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The scaled Taylor series expansion of the 2  dimensional ellipsoid is the following: 
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If we plot the probability density function of this Normal on the same graph as the 

scaled second, third, fourth, and fifth approximations of the Taylor series expansion of 

the upper-half of the 2 -dimensional ellipsoid, then we have the following: 



 

  

 

 

where the red curve is the probability density function of this Normal and the blue curve 

is the second, third, fourth, and fifth approximations of the Taylor series expansion of the 

upper-half of the 2 -dimensional ellipsoid, respectively. 

Note that as we approach infinity, we will have the following: 
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Example:  Let  be variables aligned to the 3  axes of , then the 

equation for the probability density function of the multivariate Normal with mean 
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The scaled Taylor series expansion of the upper-half of the 3 -dimensional ellipsoid is the 

following: 
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If we plot the probability density function of this Normal on the same graph as the 

scaled second, third, and fourth approximations of the Taylor series expansion of the  
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upper-half of the 3 -dimensional ellipsoid, then we have the following (two perspective 

plots per approximation with the second to fourth approximation displayed from top to 

bottom): 
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where the outer red curve is the probability density function of this Normal and the inner 

blue curve is the second, third, and fourth approximations of the Taylor series expansion 

of the upper-half of the 3 -dimensional ellipsoid, respectively from top to bottom. 

Note that as we approach infinity, we will have the following: 

 

where the outer red curve is the probability density function of this Normal and the inner 

blue curve is the Taylor series expansion of the upper-half of the 3 -dimensional ellipsoid 

as its approximation approaches infinity. 

 
 
 
 
 
 
 
 
 
 

 98



 99

LIST OF REFERENCES 

Alpaydin, E. (2004). Introduction to machine learning (adaptive computation and 
machine learning) The MIT Press.  

Bishop, C. M. (2007). Pattern recognition and machine learning (information science 
and statistics) (1st ed.) Springer.  

Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV 
library (1st ed.) O'Reilly Media, Inc.  

Burden, R. L., & Faires, J. D. (2005). Numerical analysis (8th ed.). Belmont, CA: 
Thomson Brooks/Cole.  

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd edition) (2nd 
ed.) Wiley-Interscience.  

Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning : 
Data mining, inference, and prediction : With 200 full-color illustrations. New 
York: Springer.  

Izenman, A. J. (2008). Modern multivariate statistical techniques : Regression, 
classification, and manifold learning. New York; London: Springer.  

Mahalanobis, P. C. (1936). On the generalised distance in statistics Proceedings of the 
National Institute of Sciences of India, 2(1), 49–55.  

MNIST Handwritten Digit Database, Yann LeCun and Corinna Cortes. Retrieved 
9/28/2009 from http://yann.lecun.com/exdb/mnist/  

OpenCV 1.1 (2008). Open Computer Vision Library Downloads. 

Parzen, E. (1962). On estimation of a probability density function and mode. The Annals 
of Mathematical Statistics, 33(3), 1065–1076.  

Random Forests. Retrieved 9/28/2009 from 
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#overview  

Samet, H. (2006). Foundations of multidimensional and metric data structures. 
Amsterdam ; Boston: Elsevier/Morgan Kaufmann.  

UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic) Data Set. 
Retrieved 9/28/2009 from 
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)  

http://yann.lecun.com/exdb/mnist/
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#overview
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


 100

Vincent, P., & Bengio, Y. (2002). Manifold parzen windows. Advances in Neural 
Information Processing Systems 15, 825-832.  

Wang, L., Bo, L., & Jiao, L. (2006). Rough sets and knowledge technology; A modified 
K-means clustering with a density-sensitive distance metric., 544.  

Wasserman, L. (2007). All of nonparametric statistics (springer texts in statistics) 
Springer.  

Zezula, P. (2006). Similarity search : The metric space approach. New York: Springer.  

 



 101

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Kevin Squire 
Naval Postgraduate School 
Monterey, California 
 

4. Mathias Kolsch 
Naval Postgraduate School 
Monterey, California 
 

5. John Falby 
Naval Postgraduate School 
Monterey, California 


	I. INTRODUCTION 
	II. RELATED WORK
	A. KERNEL DENSITY ESTIMATES
	1. Parzen Windows (Parzen, 1962)
	2. Manifold Parzen Windows (Vincent & Bengio, 2002)

	B. DISTANCE MEASUREMENTS
	1. Minkowski Distances
	a. Manhattan Distance (City-Block Distance)
	b. Euclidean Distance
	c. Chebyshev Distance (Chessboard Distance)

	2. Mahalanobis Distance (Mahalanobis, 1936)
	3. Density Sensitive Distance Metric (Manifold Distance) (Wang et al., 2006)

	C. PRINCIPAL COMPONENT ANALYSIS (PCA)

	III. DENSITY SENSITIVE DISTANCE MEASUREMENT
	A. DEFINITION
	B. PURPOSE
	C. PARAMETERS
	1. Kernel Bandwidth
	2. Scale

	D. IMPLEMENTATION
	E. STRENGTHS
	F. WEAKNESSES

	IV. METHODOLOGY
	A. DATASETS
	1. The Wisconsin Diagnostic Breast Cancer (WDBC) Dataset
	2. The MNIST Database of Handwritten Digits

	B. SUPERVISED LEARNING
	C. CLASSIFICATION ALGORITHMS
	1. -Nearest Neighbor Classification
	2. Support Vector Machine Classification
	3. Random Forests Classification

	D. STRATIFIED 10-FOLD CROSS VALIDATION
	E. STATISTICS
	1. Confusion Matrix
	2. Overall Accuracy
	3. Overall Error Rate
	4. Precision
	5. Recall


	V. RESULTS
	A. THE WISCONSIN DIAGNOSTIC BREAST CANCER (WDBC) DATASET
	1. Overall Accuracy and Error Rate
	2. Class Precision and Recall
	3. Precision and Recall Curves
	4. Discussion

	B. THE ONES, TWOS, AND THREES FROM THE MNIST DATABASE OF HANDWRITTEN DIGITS
	1. Overall Accuracy and Error Rate
	2. Class Precision and Recall
	3. Precision and Recall Curves
	4. Discussion


	VI. SUMMARY & CONCLUSIONS
	A. SUMMARY
	B. CONCLUSIONS
	C. FUTURE WORK

	VII. APPENDIX
	A. THEOREM:  THE NORMALIZED FIRST APPROXIMATION TO THE TAYLOR SERIES EXPANSION OF THE UPPER-HALF OF THE  DIMENSIONAL ELLIPSOID CENTERED AT  AND ROTATED IN A HYPERPLANE RESTRICTED TO THE FIRST  DIMENSIONS IS THE PROBABILITY DENSITY FUNCTION OF THE MULTIVARIATE NORMAL DISTRIBUTION
	1. The Upper-Half of the  Dimensional Axis-Aligned Ellipsoid
	2. The Upper-Half of the  Dimensional Rotated Ellipsoid

	B. COROLLARY:  THE PROBABILITY DENSITY FUNCTION OF THE MULTIVARIATE NORMAL DISTRIBUTION CENTERED AT  WITH NON-SINGULAR COVARIANCE  IS BOUNDED BELOW BY THE SECOND OR HIGHER APPROXIMATION TO THE TAYLOR SERIES EXPANSION OF THE UPPER-HALF OF THE  DIMENSIONAL ELLIPSOID WITH IDENTICAL COVARIANCE  CENTERED AT  AND MULTIPLIED BY THE SCALAR .

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST



